Adaptive QSMO-Based Sensorless Drive for IPM Motor with NN-Based Transient Position Error Compensation

Author:

Sun Linfeng1ORCID,Guo Jiawei1ORCID,Jiang Xiongwen1ORCID,Kawaguchi Takahiro1ORCID,Hashimoto Seiji1ORCID,Jiang Wei2ORCID

Affiliation:

1. Division of Electronics and Informatics, Gunma University, Kiryu 376-8515, Japan

2. Department of Electrical Engineering, Yangzhou University, Yangzhou 225127, China

Abstract

In commercial electrical equipment, the popular sensorless drive scheme for the interior permanent magnet synchronous motor, based on the quasi-sliding mode observer (QSMO) and phase-locked loop (PLL), still faces challenges such as position errors and limited applicability across a wide speed range. To address these problems, this paper analyzes the frequency domain model of the QSMO. A QSMO-based parameter adaptation method is proposed to adjust the boundary layer and widen the speed operating range, considering the QSMO bandwidth. A QSMO-based phase lag compensation method is proposed to mitigate steady-state position errors, considering the QSMO phase lag. Then, the PLL model is analyzed to select the estimated speed difference for transient position error compensation. Specifically, a transient position error compensator based on a feedback time delay neural network (FB-TDNN) is proposed. Based on the back propagation learning algorithm, the specific structure and optimal parameters of the FB-TDNN are determined during the offline training process. The proposed parameter adaptation method and two position error compensation methods were validated through simulations in simulated wide-speed operation scenarios, including sudden speed changes. Overall, the proposed scheme fully mitigates steady-state position errors, substantially mitigates transient position errors, and exhibits good stability across a wide speed range.

Funder

Yangzhou City Zero-carbon Smart Manufacturing Engineering Technology Research Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3