Disturbance Compensator Design Based on Dilated LMI for Linear Parameter-Varying Systems

Author:

İnci Mustafa1,Altun Yusuf2ORCID

Affiliation:

1. Volta Motor Industry and Trade Inc. Design Center, Cumayeri Factory, 81700 Düzce, Türkiye

2. Department of Computer Engineering, Düzce University, 81620 Düzce, Türkiye

Abstract

This paper presents a new dilated linear matrix inequality (LMI) representation to design a state feedback controller and a dynamic feedforward disturbance compensator for linear parameter-varying (LPV) systems. The improved LMIs are convex and finite-dimensional without any iterative approach. The designs are based on a new proposed equivalent bounded real lemma (BRL) by means of matrix dilation for LPV systems and uncertain linear systems under time-varying parametric uncertainties (TVPUs). This dilated BRL provides lower conservative results than existing methods in terms of robust stability. Accordingly, a dynamic disturbance compensator is designed in addition to a state feedback controller. This paper mainly focuses on the design of compensators against disturbances in addition to the design of state feedback controllers. The dynamic matrices of the compensator change with the time-varying parameters of the LPV or uncertain system during operation, assuming that the disturbances and the parameters are measurable or observable. The compensator can be designed to attenuate the disturbances/noises or to improve reference tracking. Finally, numerical and simulation outcomes are presented to prove both the effectiveness and lower conservativeness of the proposed LMIs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3