Improving Attack Graph Visual Syntax Configurations

Author:

Sherzhanov Askhat1,Atlam Hany F.1ORCID,Azad Muhammad Ajmal2ORCID,Lallie Harjinder Singh1ORCID

Affiliation:

1. Cyber Security Centre, WMG, University of Warwick, Coventry CV4 7AL, UK

2. School of Computing, Birmingham City University, SteamHouse, Belmont Row, Birmingham B4 7RQ, UK

Abstract

As technology advances and cyber threats become increasingly sophisticated, the task of recognising and understanding malicious activities becomes more complex. This persistent issue is widely acknowledged and extensively documented within the cybersecurity community. Attack modelling techniques (AMTs), such as attack graphs, have emerged as valuable tools in aiding cyberattack perception. These visualisation tools offer crucial insights into the complex relationships between various components within a system or network, shedding light on potential attack paths and vulnerabilities. This paper proposes an attack graph visual syntax method to improve cyberattack perception among experts and non-experts. The proposed approach was developed to streamline complexity and enhance clarity, thus augmenting the interpretability for users by enhancing visual structural components, such as hue, chromaticity, and line parameters. The proposed attack graph (pag) was empirically evaluated against the adapted attack graph (aag) presented in the literature. The empirical evaluation (n = 83) was conducted through a 3 × 2 × 2 factorial design and two-way analysis of variance (ANOVA) with repeated measures. The participants were classified according to their respective background cohorts into expert and non-expert (expert n = 37, non-expert n = 46) and then grouped into two groups: proposed attack graph (pag) and adapted attack graph (aag) (pag n = 41, aag n = 42). The empirical results demonstrated that while the proposed attack graph (pag) implemented various visual modifications such as brighter hues, denser line structures, and varied shapes, these enhancements did not significantly improve the perception of cyberattacks among individuals who lack expertise in the field, including corporate executives. Moreover, the use of variables such as colour, tone, and line width/density/structure did not help objects in the graph be distinguished more effectively. This paper provides significant insights into the impact of visual enhancements on cyberattack perception, highlighting that visual enhancements alone may not be sufficient to improve cyberattack perception for individuals lacking expertise in the field.

Publisher

MDPI AG

Reference47 articles.

1. An empirical evaluation of the effectiveness of attack graphs and fault trees in cyber-attack perception;Lallie;IEEE Trans. Inf. Forensics Secur.,2017

2. The rise in cybercrime and the dynamics of exploiting the human vulnerability factor;Conteh;Int. J. Comput. (IJC),2016

3. Morgan, S. (2016). Why Ceos Are Failing Cybersecurity, and How to Help Them Get Passing Grades, Forbes.

4. From weakest link to security hero: Transforming staff security behavior;Pfleeger;J. Homel. Secur. Emerg. Manag.,2014

5. Human factor, a critical weak point in the information security of an organization’s internet of things;Li;Heliyon,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3