In-Situ Characterisation of Charge Transport in Organic Light-Emitting Diode by Impedance Spectroscopy

Author:

Chulkin PavelORCID

Abstract

The article demonstrates an original, non-destructive technique that could be used to in situ monitor charge transport in organic light-emitting diodes. Impedance spectroscopy was successfully applied to determine an OLED’s charge carrier mobility and average charge density in the hole- and electron-transport layer in a range of applied voltages. The fabricated devices were composed of two commercially available materials: NPB (N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine) and TPBi (2,2′,2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)) as hole- and electron-transport layers, respectively. By varying the thicknesses of the hole-transport layer (HTL) and the electron-transport layer (ETL), correlations between layer thickness and both charge carrier mobility and charge density were observed. A possibility of using the revealed dependencies to predict diode current–voltage characteristics in a wide range of applied voltage has been demonstrated. The technique based on a detailed analysis of charge carrier mobilities and densities is useful for choosing the appropriate transport layer thicknesses based on an investigation of a reference set of samples. An important feature of the work is its impact on the development of fundamental research methods that involve AC frequency response analysis by providing essential methodology on data processing.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

MDPI AG

Reference36 articles.

1. Organic Light Emitting Devices: Synthesis, Properties and Applications;Müllen,2006

2. Organic Light Emitting Diodes: The Use of Rare Earth and Transition Metals;Pereira,2012

3. Luminescent Materials and Applications;Kitai,2008

4. Mixing of Excimer and Exciplex Emission: A New Way to Improve White Light Emitting Organic Electrophosphorescent Diodes

5. The First Tandem, All-exciplex-based WOLED

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3