An Effective Orchestration for Fingerprint Presentation Attack Detection

Author:

Lee Youn KyuORCID,Jeong JongwookORCID,Kang DongwooORCID

Abstract

Fingerprint presentation attack detection has become significant due to a wide-spread usage of fingerprint authentication systems. Well-replicated fingerprints easily spoof the authentication systems because their captured images do not differ from those of genuine fingerprints in general. While a number of techniques have focused on fingerprint presentation attack detection, they suffer from inaccuracy in determining the liveness of fingerprints and performance degradation on unknown types of fingerprints. To address existing limitations, we present a robust fingerprint presentation attack detection method that orchestrates different types of neural networks by incorporating a triangular normalization method. Our method has been evaluated on a public benchmark comprising 13,000 images with five different fake materials. The evaluation exhibited our method’s higher accuracy in determining the liveness of fingerprints as well as better generalization performance on different types of fingerprints compared to existing techniques.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference52 articles.

1. Fingerprint Sensor Market by Type, Technology, Application, and Geography–Global Forecast to 2023https://www.researchandmarkets.com/reports/4542299/

2. Securing biometric authentication system using blockchain

3. Galaxy S10’s Ultrasonic Fingerprint Sensor Fooled by a 3D-Printed Fingerprinthttps://www.sammobile.com/

4. Fingerprint Liveness Detection Using Local Ridge Frequencies and Multiresolution Texture Analysis Techniques

5. Local contrast phase descriptor for fingerprint liveness detection

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3