Segmentation of Spectral Plant Images Using Generative Adversary Network Techniques

Author:

Kumar Sanjay,Kansal Sahil,Alkinani Monagi H.ORCID,Elaraby Ahmed,Garg Saksham,Natarajan Shanthi,Sharma Vishnu

Abstract

The spectral image analysis of complex analytic systems is usually performed in analytical chemistry. Signals associated with the key analytics present in an image scene are extracted during spectral image analysis. Accordingly, the first step in spectral image analysis is to segment the image in order to extract the applicable signals for analysis. In contrast, using traditional methods of image segmentation in chronometry makes it difficult to extract the relevant signals. None of the approaches incorporate contextual information present in an image scene; therefore, the classification is limited to thresholds or pixels only. An image translation pixel-to-pixel (p2p) method for segmenting spectral images using a generative adversary network (GAN) is presented in this paper. The p2p GAN forms two neuronal models. During the production and detection processes, the representation learns how to segment ethereal images precisely. For the evaluation of the results, a partial discriminate analysis of the least-squares method was used to classify the images based on thresholds and pixels. From the experimental results, it was determined that the GAN-based p2p segmentation performs the best segmentation with an overall accuracy of 0.98 ± 0.06. This result shows that image processing techniques using deep learning contribute to enhanced spectral image processing. The outcomes of this research demonstrated the effectiveness of image-processing techniques that use deep learning to enhance spectral-image processing.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3