Global Correlation Enhanced Hand Action Recognition Based on NST-GCN

Author:

Yang Shiqiang,Li Qi,He Duo,Wang Jinhua,Li Dexin

Abstract

Hand action recognition is an important part of intelligent monitoring, human–computer interaction, robotics and other fields. Compared with other methods, the hand action recognition method using skeleton information can ignore the error effects caused by complex background and movement speed changes, and the computational cost is relatively small. The spatial-temporal graph convolution networks (ST-GCN) model has excellent performance in the field of skeleton-based action recognition. In order to solve the problem of the root joint and the further joint not being closely connected, resulting in a poor hand-action-recognition effect, this paper firstly uses the dilated convolution to replace the standard convolution in the temporal dimension. This is in order to process the time series features of the hand action video, which increases the receptive field in the temporal dimension and enhances the connection between features. Then, by adding non-physical connections, the connection between the joints of the fingertip and the root of the finger is established, and a new partition strategy is adopted to strengthen the hand correlation of each joint point information. This helps to improve the network’s ability to extract the spatial-temporal features of the hand. The improved model is tested on public datasets and real scenarios. The experimental results show that compared with the original model, the 14-category top-1 and 28-category top-1 evaluation indicators of the dataset have been improved by 4.82% and 6.96%. In the real scene, the recognition effect of the categories with large changes in hand movements is better, and the recognition results of the categories with similar trends of hand movements are poor, so there is still room for improvement.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference20 articles.

1. A review of sign language and hand motion recognition techniques;Dabwan;Int. J. Adv. Sci. Technol.,2020

2. Multi-Task and Multi-Modal Learning for RGB Dynamic Gesture Recognition

3. Dynamic hand gesture recognition based on short-term sampling neural networks

4. Dynamic Gesture Recognition Based on 3D Separable Convolutional LSTM Networks;Zhang;Proceedings of the IEEE 11th International Conference on Software Engineering and Service Science (ICSESS),2020

5. Multi-Scale Attention 3D Convolutional Network for Multimodal Gesture Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3