A Coherent Integrated TDOA Estimation Method for Target and Reference Signals

Author:

Ouyang Xinxin,Yao Shanfeng,Wan Qun

Abstract

The performance of a time difference of arrival (TDOA) localization system is severely affected by time synchronization errors, and making use of reference signals is a common solution for the problem. The traditional method has two steps, first to measure the TDOAs of the target signal and reference signal separately, and next, to compensate the estimated target TDOA with the difference of the estimated reference TDOA and the true reference TDOA. Since the performance of the TDOA estimation is mainly decided by the frequency information, a coherent integration TDOA estimation method for the target signal and reference signal is proposed in this paper, based on cross correlation phase difference compensation, with use of the signals’ frequencies. First, as per the traditional method, the separated cross correlation functions of the target signal and reference signal were obtained by cross correlation, and the target TDOA and reference TDOA of the separate method were estimated. Next, the cross correlation phase was analyzed for each signal. Then the coherent integration cross correlation was obtained with phase compensation, from which the estimation of the target TDOA and reference TDOA could simultaneously be achieved. We performed simulation comparisons with the two methods, and showed that the proposed algorithm provided better performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3