OGWO-CH: Hybrid Opposition-Based Learning with Gray Wolf Optimization Based Clustering Technique in Wireless Sensor Networks

Author:

Ramalingam RajakumarORCID,Karunanidy DineshORCID,Balakrishnan Aravind,Rashid MamoonORCID,Dumka Ankur,Afifi Ashraf,Alshamrani Sultan S.ORCID

Abstract

A Wireless Sensor Network (WSN) is a group of autonomous sensors that are distributed geographically. However, sensor nodes in WSNs are battery-powered, and the energy drainage is a significant issue. The clustering approach holds an imperative part in boosting the lifespan of WSNs. This approach gathers the sensors into clusters and selects the cluster heads (CHs). CHs accumulate the information from the cluster members and transfer the data to the base station (BS). Yet, the most challenging task is to select the optimal CHs and thereby to enhance the network lifetime. This article introduces an optimal cluster head selection framework using hybrid opposition-based learning with the gray wolf optimization algorithm. The hybrid technique dynamically trades off between the exploitation and exploration search strategies in selecting the best CHs. In addition, the four different metrics such as energy consumption, minimal distance, node centrality and node degree are utilized. This proposed selection mechanism enhances the network efficiency by selecting the optimal CHs. In addition, the proposed algorithm is experimented on MATLAB (2018a) and validated by different performance metrics such as energy, alive nodes, BS position, and packet delivery ratio. The obtained results of the proposed algorithm exhibit better outcome in terms of more alive nodes per round, maximum number of packets delivery to the BS, improved residual energy and enhanced lifetime. At last, the proposed algorithm has achieved a better lifetime of ≈20%, ≈30% and ≈45% compared to grey wolf optimization (GWO), Artificial bee colony (ABC) and Low-energy adaptive clustering hierarchy (LEACH) techniques.

Funder

Taif University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3