Development of an Electrooculogram (EOG) and Surface Electromyogram (sEMG)-Based Human Computer Interface (HCI) Using a Bone Conduction Headphone Integrated Bio-Signal Acquisition System

Author:

Jo Ha Na,Park Sung WooORCID,Choi Han Gyeol,Han Seok Hyun,Kim Tae SeonORCID

Abstract

Human–computer interface (HCI) methods based on the electrooculogram (EOG) signals generated from eye movement have been continuously studied because they can transmit the commands to a computer or machine without using both arms. However, usability and appearance are the big obstacles to practical applications since conventional EOG-based HCI methods require skin electrodes outside the eye near the lateral and medial canthus. To solve these problems, in this paper, we report development of an HCI method that can simultaneously acquire EOG and surface-electromyogram (sEMG) signals through electrodes integrated into bone conduction headphones and transmit the commands through the horizontal eye movements and various biting movements. The developed system can classify the position of the eyes by dividing the 80-degree range (from −40 degrees to the left to +40 degrees to the right) into 20-degree sections and can also recognize the three biting movements based on the bio-signals obtained from the three electrodes, so a total of 11 commands can be delivered to a computer or machine. The experimental results showed the interface has accuracy of 92.04% and 96.10% for EOG signal-based commands and sEMG signal-based commands, respectively. As for the results of virtual keyboard interface application, the accuracy was 97.19%, the precision was 90.51%, and the typing speed was 5.75–18.97 letters/min. The proposed interface system can be applied to various HCI and HMI fields as well as virtual keyboard applications.

Funder

Catholic University of Korea

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3