Adjacent Frame Difference with Dynamic Threshold Method in Underwater Flash Imaging LiDAR

Author:

Yang Gang,Tian Zhaoshuo,Bi Zongjie,Cui Zihao,Liu Qingcao

Abstract

During the underwater LiDAR imaging process, the images achieved by the conventional constant threshold adjacent frame difference (AFD) method normally loses the distance information of targets. This is mainly due to the Gaussian distribution of the laser light intensity field, which leads to the inhomogeneous intensity distribution in the frame from the target acquired by intensity charge-coupled devices (ICCD). In order to overcome this issue, the novel dynamic threshold adjacent frame difference (DTAFD) method was proposed in this paper. The DTAFD method modifies the intensity threshold following the pixel intensities in the different parts of the single frame intensity image acquired by ICCD. After the detailed theoretical demonstration of the DTAFD method, with the purpose of verifying its feasibility, the self-developed range-gated flash imaging LiDAR has been employed to construct the distance images of the rectangular and circular shaped targets at different distances. The distance between the rectangular target and the LiDAR system is 25.7 m, and the circular target is 70 cm further away from the rectangular target. The full distance information of these two targets is obtained by the DTAFD method with an effectively suppressing noise and the PSNR is increased from 6.95±0.0426 dB to 7.62±0.0264 dB. The experimental results indicate that the DTAFD method efficiently solves the AFD method’s drawback on the target information loss caused by the unequal optical field distribution, which makes it more suitable for the scenarios with uneven laser distribution such as the underwater imaging environment.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference16 articles.

1. Airborne laser bathymetry – detecting and recording submerged archaeological sites from the air

2. UTOFIA: An underwater time-of-flight image acquisition system;Driewer;Proceedings of the Electro-Optical Remote Sensing XI. International Society for Optics and Photonics,2017

3. Custom-Technology Single-Photon Avalanche Diode Linear Detector Array for Underwater Depth Imaging

4. Underwater Image Enhancement Using Improved CNN Based Defogging

5. 3D reconstruction of large target by range gated laser imaging;Li;Proceedings of the Optoelectronic Imaging and Multimedia Technology III,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3