Author:
Wang Chenyang,Zhang Min,Shi Fan,Xue Pengfei,Li Yang
Abstract
With the development of network technology, the number of gambling websites has grown dramatically, causing a threat to social stability. There are many machine learning-based methods are proposed to identify gambling websites by analyzing the URL, the text, and the images of the websites. Nevertheless, most of the existing methods ignore one important piece of information, i.e., the text within the website images. Only the visual features of images are extracted for detection, while the semantic features of texts on the images are ignored. However, these texts have key information clearly pointing to gambling websites, which can help us identify such websites more accurately. Therefore, how to fuse image and text multimodal data is a challenge that should be met.Motivated by this, in this paper, we propose a hybrid multimodal data fusion-based method for identifying gambling websites by extracting and fusing visual and semantic features of the website screenshots. First, we fine tune the pretrained ResNet34 model to train an image classifier and to extract visual features of webpage screenshots. Second, we extract textual content from webpage screenshots through the optical character recognition (OCR) technique. We use pretrained Word2Vec word vectors as the initial embedding layer and use Bi-LSTM to train a text classifier and extract semantic features of textual content on the screenshots. Third, we use self-attention to fuse the visual and semantic features and train a multimodal classifier. The prediction results of image, text, and multimodal classifiers are fused by the late fusion method to obtain the final prediction result. To demonstrate the effectiveness of the proposed method, we conduct experiments on the webpage screenshot dataset we collected. The experimental results indicate that OCR text on the webpage screenshots has strong semantic features and the proposed hybrid multimodal data fusion based method can effectively improve the performance in identifying gambling websites, with accuracy, precision, recall, and F1-score all over 99%.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference36 articles.
1. Demystifying illegal mobile gambling apps;Gao;Proceedings of the Web Conference 2021,2021
2. Honeypot system for automatic reporting of illegal online gambling sites utilizing SMS spam;Min;Proceedings of the 2021 IEEE World Automation Congress (WAC),2021
3. Detecting Illegal Online Gambling (IOG) Services in the Mobile Environment
4. Phishnet: Predictive blacklisting to detect phishing attacks;Prakash;Proceedings of the 2010 Proceedings IEEE INFOCOM,2010
5. An empirical analysis of phishing blacklists;Sheng;Proceedings of the CEAS 2009 Sixth Conference on Email and Anti-Spam,2009
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献