Phase Transition of Total Variation Based on Approximate Message Passing Algorithm

Author:

Cheng XiangORCID,Lei Hong

Abstract

In compressed sensing (CS), one seeks to down-sample some high-dimensional signals and recover them accurately by exploiting the sparsity of the signals. However, the traditional sparsity assumption cannot be directly satisfied in most practical applications. Fortunately, many signals-of-interest do at least exhibit a low-complexity representation with respect to a certain transformation. Particularly, total variation (TV) minimization is a notable example when the transformation operator is a difference matrix. Presently, many theoretical properties of total variation have not been completely explored, e.g., how to estimate the precise location of phase transitions and their rigorous understanding is still in its infancy. So far, the performance and robustness of the existing algorithm for phase transition prediction of TV model are not satisfactory. In this paper, we design a new approximate message passing algorithm to solve the above problems, called total variation vector approximate message passing (TV-VAMP) algorithm. To be specific, we first consider the problem from the Bayesian perspective, and formulate it as an optimization problem. Then, the vector factor graph for the TV model is constructed based on the formulized problem. Finally, the TV-VAMP algorithm is derived according to the idea of probabilistic inference in machine learning. Compared with the existing algorithm, our algorithm can be applied to a wider range of measurements distributions, including the non-zero-mean Gaussian distribution measurements matrix and ill-conditioned measurements matrix. Furthermore, in experiments with various settings, including different measurement distribution matrices, signal gradient sparsity, and measurement times, the proposed algorithm can almost reach the target mean squared error (−60 dB) with fewer iterations and better fit the empirical phase transition curve.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3