Statistical Channel Model and Systematic Random Linear Network Coding Based QoS Oriented and Energy Efficient UWSN Routing Protocol

Author:

Basavaraju Pramod HalebeeduORCID,Lokesh Gururaj HarinahalliORCID,Mohan Gowtham,Jhanjhi Noor ZamanORCID,Flammini FrancescoORCID

Abstract

Considering the significance of an energy efficient, delay tolerant and reliable communication protocol for underwater acoustic wireless sensor network (UWSN), this paper proposes a novel systematic random linear network coding (SRLNC) based transmission system examined over a robust statistical UWSN channel model. The derived statistical channel model deals with both the small-scale fading primarily caused by scattering and small wavelength changes and large-scale fading introduced due to node dislocation in the underwater acoustic medium. The proposed SRLNC transmission-based routing approach has been applied over the proposed underwater acoustic (statistical) channel model, and respective performance assessment has been conducted in terms of throughput, energy efficiency, delay and computational complexity by varying network condition parameters. The contributions such as low coefficient vector and Galois filed, low redundant message requirements, computationally efficient pre-coding scheme, iterative buffer flush and enhanced FEC based decoding make the SRLNC based routing protocol sufficiently robust to enable reliable, energy-efficient and delay resilient communication over UWSN. The proposed SRLNC based UWSN routing protocol and its efficacy over dynamic channel conditions affirm that it can be a potential solution for QoS-oriented mission critical underwater communication purposes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference58 articles.

1. Underwater sensor networks: applications, advances and challenges

2. Current Progress and Research Issues in Underwater Sensor Networks;Guo;J. Comput. Res. Dev.,2010

3. Statistical Characterization and Computationally Efficient Modeling of a Class of Underwater Acoustic Communication Channels

4. GEDAR: Geographic and opportunistic routing protocol with Depth Adjustment for mobile underwater sensor networks

5. Review on Time Synchronization Techniques in Underwater Acoustic Sensor Networks;Hong;Acta Electron. Sin.,2013

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3