Abstract
Recently, deep neural networks have shown surprising results in solving most of the traditional image processing problems. However, the video frame interpolation field does not show relatively good performance because the receptive field requires a vast spatio-temporal range. To reduce the computational complexity, in most frame interpolation studies, motion is first calculated with the optical flow, then interpolated frames are generated through backward warping. However, while the backward warping process is simple to implement, the interpolated image contains mixed motion and ghosting defects. Therefore, we propose a new network that does not use the backward warping method through the proposed max-min warping. Since max-min warping generates a clear warping image in advance according to the size of the motion and the network is configured to select the warping result according to the warped layer, using the proposed method, it is possible to optimize the computational complexity while selecting a contextually appropriate image. The video interpolation method using the proposed method showed 34.847 PSNR in the Vimeo90k dataset and 0.13 PSNR improvement compared to the Quadratic Video Interpolation method, showing that it is an efficient frame interpolation self-supervised learning.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献