Abstract
The Internet of Medical Things (IoMT) global market has grown and developed significantly in recent years, and the number of IoMT devices is increasing every year. IoMT systems are now very popular and have become part of our everyday life. However, such systems should be properly protected to preventing unauthorized access to the devices. One of the most popular security methods that additionally relies on real-time communication is Blockchain. Moreover, such a technique can be supported by the Trusted Third Party (TTP), which guarantees data immutability and transparency. The research and industrial community has predicted the proliferation of Blockchain-based IoMT (BIoMT), for providing security, privacy, and effective insurance processing. A connected environment comprises some of the unique features of the IoMT in the form of sensors and devices that capture and measure, recognize and classify, assess risk, notify, make conclusions, and take action. Distributed communication is also unique due to the combination of the fact that the Blockchain cannot be tampered with and the Peer-to-Peer (P2P) technique, especially compared to the traditional cloud-based techniques where the reliance of IoMT systems on the centralized cloud makes it somewhat vulnerable. This paper proposes a Blockchain-based technique oriented on IoMT applications with a focus on maintaining Confidentiality, Integrity, and Availability (the CIA triad) of data communication in the system. The proposed solution is oriented toward trusted and secure real-time communication. The presented method is illustrated by an example of a cloud-based hospital application. Finally, the security aspects of the proposed approach are studied and analyzed in detail.
Funder
Ministry of Science and Higher Education
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献