FPGA-Based Convolutional Neural Network Accelerator with Resource-Optimized Approximate Multiply-Accumulate Unit

Author:

Cho Mannhee,Kim YoungminORCID

Abstract

Convolutional neural networks (CNNs) are widely used in modern applications for their versatility and high classification accuracy. Field-programmable gate arrays (FPGAs) are considered to be suitable platforms for CNNs based on their high performance, rapid development, and reconfigurability. Although many studies have proposed methods for implementing high-performance CNN accelerators on FPGAs using optimized data types and algorithm transformations, accelerators can be optimized further by investigating more efficient uses of FPGA resources. In this paper, we propose an FPGA-based CNN accelerator using multiple approximate accumulation units based on a fixed-point data type. We implemented the LeNet-5 CNN architecture, which performs classification of handwritten digits using the MNIST handwritten digit dataset. The proposed accelerator was implemented, using a high-level synthesis tool on a Xilinx FPGA. The proposed accelerator applies an optimized fixed-point data type and loop parallelization to improve performance. Approximate operation units are implemented using FPGA logic resources instead of high-precision digital signal processing (DSP) blocks, which are inefficient for low-precision data. Our accelerator model achieves 66% less memory usage and approximately 50% reduced network latency, compared to a floating point design and its resource utilization is optimized to use 78% fewer DSP blocks, compared to general fixed-point designs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference38 articles.

1. Mobilenets: Efficient convolutional neural networks for mobile vision applications;Howard;arXiv,2017

2. Convolutional neural networks: an overview and application in radiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3