A Phase Generation Shifting Algorithm for Prosumer Surplus Management in Microgrids Using Inverter Automated Control

Author:

Ivanov OvidiuORCID,Neagu Bogdan-ConstantinORCID,Gavrilas Mihai,Grigoras GheorgheORCID

Abstract

Four-wire low-voltage microgrids supply one-phase consumers with electricity, responding to a continuously changing demand. For addressing climate change concerns, national governments have implemented incentive schemes for residential consumers, encouraging the installation of home PV panels for covering self-consumption needs. In the absence of adequate storage capacities, the surplus is sold back by these entities, called prosumers, to the grid operator or, in local markets, to other consumers. While these initiatives encourage the proliferation of green energy resources, and ample research is dedicated to local market designs for prosumer–consumer trading, the main concern of distribution network operators is the influence of power flows generated by prosumers’ surplus injection on the operating states of microgrids. The change in power flow amount and direction can greatly influence the economic and technical operating conditions of radial grids. This paper proposes a metaheuristic algorithm for prosumer surplus management that optimizes the power surplus injections using the automated control of three-phase inverters, with the aim of reducing the active power losses over a typical day of operation. A case study was performed on two real distribution networks with distinct layouts and load profiles, and the algorithm resulted efficient in both scenarios. By optimally distributing the prosumer generation surplus on the three phases of the network, significant loss reductions were obtained, with the best results when the generated power was injected in an unbalanced, three-phase flow.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Energy Management System: Blockchain-Based Smart Meters in Microgrids;2022 4th Global Power, Energy and Communication Conference (GPECOM);2022-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3