Connected Objects Geo-Localization Based on SS-RSRP of 5G Networks

Author:

Bannour AhmedORCID,Harbaoui AhmedORCID,Alsolami FawazORCID

Abstract

The Global Positioning System (GPS) is not the only way to solve connected objects’ geo-localization problems; it is also possible to use the mobile network infrastructure to geo-locate objects connected to the network, using antennas and signals designed for voice and data transfer, such as the 5th generation network. 5G is considered as a least expensive solution because there is no specific equipment to set up. As long as the object is in an area covered by the network, it connects to the nearest 5G Micro-Cell (MC). Through exchange of signals with the MC node we can locate the object. Currently, this location is very fast with less than 5 s but not very precise because it depends on the number of MC antennas of the operator in question and their distance. This paper presents a novel technique to geo-locate connected object in a covered 5G area. We exploit the 5G SS-RSRP used for signal quality measurement, to estimate the distance between two Connected Objects (COs) in move and in a dense urban area. The overall goal is to present a new concept laying on the 5G SS-RSRP signalling. The proposed solution takes into consideration the Deterministic and the Stochastic effect of the received signals which is not treated by the previous works. The accuracy is optimum even after approaching to the distance of one meter which is not reached in previous works too. Our method can also be deployed in the upcoming 5G network since it relies on 5G signals itself. This work and that of Wang are both based on RSRP and give comparable theoretical complexities therefore comparable theoretical execution times as well. However, to obtain a reliable learning Wang requires a huge amount of data which makes it difficult to get a real time aspect of this algorithm. The use of RSRP and the elimination of the learning phase will give more chance to our work to achieve desired performances. Numerical results show the appropriateness of the proposed algorithms and good location accuracy of around one meter. The Cramer Rao Lower Bound derivations shows the robustness of the proposed estimator and consolidate the work.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3