A Novel Technique for Image Steganalysis Based on Separable Convolution and Adversarial Mechanism

Author:

Ge Yuwei,Zhang Tao,Liang Haihua,Jiang Qingfeng,Wang Dan

Abstract

Image steganalysis is a technique for detecting the presence of hidden information in images, which has profound significance for maintaining cyberspace security. In recent years, various deep steganalysis networks have been proposed in academia, and have achieved good detection performance. Although convolutional neural networks (CNNs) can effectively extract the features describing the image content, the difficulty lies in extracting the subtle features that describe the existence of hidden information. Considering this concern, this paper introduces separable convolution and adversarial mechanism, and proposes a new network structure that effectively solves the problem. The separable convolution maximizes the residual information by utilizing its channel correlation. The adversarial mechanism makes the generator extract more content features to mislead the discriminator, thus separating more steganographic features. We conducted experiments on BOSSBase1.01 and BOWS2 to detect various adaptive steganography algorithms. The experimental results demonstrate that our method extracts the steganographic features effectively. The separable convolution increases the signal-to-noise ratio, maximizes the channel correlation of residuals, and improves efficiency. The adversarial mechanism can separate more steganographic features, effectively improving the performance. Compared with the traditional steganalysis methods based on deep learning, our method shows obvious improvements in both detection performance and training efficiency.

Funder

National Natural Science Foundation of China

Humanity and Social Science Youth Foundation of Ministry of Education of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3