Abstract
In autonomous driving vehicles, the driver can engage in non-driving-related tasks and does not have to pay attention to the driving conditions or engage in manual driving. If an unexpected situation arises that the autonomous vehicle cannot manage, then the vehicle should notify and help the driver to prepare themselves for retaking manual control of the vehicle. Several effective notification methods based on multimodal warning systems have been reported. In this paper, we propose an advanced method that employs alarms for specific conditions by analyzing the differences in the driver’s responses, based on their specific situation, to trigger visual and auditory alarms in autonomous vehicles. Using a driving simulation, we carried out human-in-the-loop experiments that included a total of 38 drivers and 2 scenarios (namely drowsiness and distraction scenarios), each of which included a control-switching stage for implementing an alarm during autonomous driving. Reaction time, gaze indicator, and questionnaire data were collected, and electroencephalography measurements were performed to verify the drowsiness. Based on the experimental results, the drivers exhibited a high alertness to the auditory alarms in both the drowsy and distracted conditions, and the change in the gaze indicator was higher in the distraction condition. The results of this study show that there was a distinct difference between the driver’s response to the alarms signaled in the drowsy and distracted conditions. Accordingly, we propose an advanced notification method and future goals for further investigation on vehicle alarms.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference30 articles.
1. Driving attention: Cognitive engineering in designing attractions and distractions;Lee;Front. Eng.,2008
2. Towards an understanding of driver inattention: Taxonomy and theory;Regan;Ann. Adv. Automot. Med.,2014
3. Human-vehicle interaction: Technology trends in drivers’ driving workload management;Hwang;Electron. Telecommun. Trends,2014
4. Automated Driving Road Map;Force,2015
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献