Quantized Cooperative Spectrum Sensing in Bandwidth-Constrained Cognitive V2X Based on Deep Learning

Author:

Li Jingxian,Hu Bin-Jie

Abstract

The output of the network in a deep learning (DL) based single-user signal detector, which is a normalized 2 × 1 class score vector, needs to be transmitted to the fusion center (FC) by occupying a large amount of the communication channel (CCH) bandwidth in the cooperative spectrum sensing (CSS). Obviously, in cognitive radio for vehicle to everything (CR-V2X), it is particularly important to propose a method that makes full use of the bandwidth-constrained CCH to obtain the optimal detection performance. In this paper, we firstly propose a novel single-user spectrum sensing method based on modified-ResNeXt in CR-V2X. The simulation results show that our proposed method performs better than two advanced DL based spectrum sensing methods with shorter inference time. We then introduce a quantization-based cooperative spectrum sensing (QBCSS) algorithm based on DL in CR-V2X, and the impact of the number of reported bits on the sensing results is also discussed. Through the experimental results, we conclude that the QBCSS algorithm reaches the optimal detection performance when the number of bits for quantizing local sensing data is 4. Finally, according to the conclusion, a bandwidth-constrained QBCSS scheme based on DL is proposed to make full use of the CCH with limited capacity to achieve the optimal detection performance.

Funder

National Natural Science Foundation of China

Key Project of Guangdong Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3