Abstract
True random-number generators based on ring oscillators (RO-based TRNG) are widely used in the field of information encryption because of their simple structure and compatibility with CMOS technology. However, radiated or conducted electromagnetic interference can dramatically deteriorate the randomness of the output bitstream of the RO-based TRNG, which poses a great threat to security. Traditional research focuses on the innovation of the means of attack and the detection of circuit states. There is a lack of research on the interference mechanism and anti-interference countermeasures. In this paper, the response of the RO array to electromagnetic interference was analyzed, and the concept of synchronous locking was proposed to describe the locking scene of multiple ROs. On the basis of synchronous locking, the RF immunity of the RO-based TRNG was modeled, which can explain the degradation mechanism of bitstream randomness under RFI. Moreover, the design method of gate-delay differentiation is presented to improve the RF immunity of the RO-based TRNG at a low cost. Both transistor-level simulation and board-level measurement proved the rationality of this scheme.
Funder
the Science and Technology Program of Guangdong Province
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference18 articles.
1. A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks
2. Analysis and Enhancement of Random Number Generator in FPGA Based on Oscillator Rings
3. NIST Special Publication 800-22: A Statistical Test Suite for the Validation of Random Number Generators and Pseudo Random Number Generators for Cryptographic Applications;Rukhin,2010
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献