Abstract
This work presents a battery management system for lead–acid batteries that integrates a battery-block (12 V) sensor that allows the online monitoring of a cell’s temperature, voltage, and impedance spectra. The monitoring and diagnostic capabilities enable the implementation of improved battery management algorithms in order to increase the life expectancy of lead–acid batteries and report the battery health conditions. The novelty is based on the online monitoring of the evolution of electrochemical impedance spectroscopy (EIS) over a battery’s life as a way to monitor the battery’s performance. Active cell balancing is also proposed as an alternative to traditional charge equalization to minimize excessive electrolyte consumption. A battery-block sensor (VTZ) was validated by using the correlation between experimental data collected from electrochemical impedance spectroscopy lab-testing equipment and sensors that were implemented in a series of 12 V lead–acid battery blocks. The modular design and small size allow easy and direct integration into different commercial cell formats, and the proposed methodology can be used for applications ranging from automotive to stationary energy storage.
Funder
Agencia Estatal de Investigación
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference31 articles.
1. Fpga Design Scheme for Battery SOC & SOH Algorithms for Ad-vanced BMS;Kumar;IJESRT,2017
2. SoC Estimation for Lithium-ion Batteries: Review and Future Challenges
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献