A Large Signal Theory of Multiple Cascaded Bunching Cavities for High-Efficiency Triaxial Klystron Amplifier

Author:

Yang Fuxiang,Dang FangchaoORCID,He Juntao,Zhang Xiaoping,Ju JinchuanORCID

Abstract

This paper presents a large signal theory of multiple cascaded bunching cavities for the design of high-efficiency triaxial klystron amplifiers (TKAs). The theoretical analysis of multiple cascaded bunching cavities is presented, focusing on the relationship between gap voltage and first harmonic current and velocity dispersion, which can exactly describe the clustering state of intense relativistic electron beams. The theoretical results of the first harmonic current and velocity dispersion are basically consistent with its simulation results, which can justify a high degree of confidence in the validity of that theory. This theory can predict the possibility of deep modulation of intense relativistic electron beams when the depth of the first harmonic current is about 150% by multiple cascaded bunching cavities. By properly accounting for this theory, we can design a Ku-band TKA with nearly 60% microwave conversion efficiency, which can provide theoretical and simulation guidance for the design of high-efficiency TKAs. More importantly, when we increase the electron beam voltage from 300 kV to 600 kV and keep the relativistic perveance constant, this device also can obtain more than 50% efficiency and 40 dB gain. As a result, we can design a Ku-band TKA with high average output power of about 1.5 GW, 52% efficiency and 46 dB gain.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3