FPGA Implementation of High-Efficiency ECC Point Multiplication Circuit

Author:

Zhao XiaORCID,Li Bing,Zhang Lin,Wang Yazhou,Zhang Yan,Chen Rui

Abstract

The authentication of Internet of Things (IoT) devices based on the Physical Unclonable Function (PUF) is widely adopted in the information security domain. However, the leakage of PUF responses in an authentication system reduces its privacy and security. To improve its security, we can utilize the Elliptic Curve Cryptography (ECC) algorithm with different key lengths to encrypt the PUF response arbitrarily. Point multiplication is the most time-consuming operation in ECC because of its complex calculation process, which seriously affects the efficiency of the PUF response encryption. In order to solve this problem, a point multiplier based on binary field with reconfigurable key lengths of 233, 283, 409 and 571 is designed in this paper. In our method, by reusing the underlying computing units, the resources needed for point multiplication are effectively reduced. What it is more innovative is that double point multiplication operations with a key length of less than 283 bits can be performed simultaneously in the elaborate designed point multiplication circuit, which can effectively speed up the encryption process of ECC. The circuit is implemented on Xilinx Virtex-6 FPGA. The experiment results show the single point multiplication times of 233, 283, 409 and 571 key lengths are 19.33, 22.36, 41.36 and 56.5 μs, respectively, under the clock frequency of 135 MHz. In addition, it only needs 19.33 μs to perform two-point multiplication operations when the key length is 233 bits at the same time. When the key length is 283 bits, the point multiplication operation can be performed twice in 22.36 μs.

Funder

ShenZhen Science Technology and Innovation Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference20 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3