Author:
Yao Yuan,Ge Qiuyue,Yu Junsheng,Chen Xiaodong
Abstract
This paper proposed a novel antenna for ultra-high frequency (UHF) radio frequency identification (RFID) near-field applications with uniform distribution of the electric field along the x-axis (Ex), and the y-axis (Ey). The proposed antenna adopted a spiral structure to achieve broadband and multi-polarization. The novel antenna achieved good impedance matching within 860–960 MHz. Using a ground plate, the proposed antenna achieved low far-field gain and a maximum gain of less than −11 dBi. The component of the excited electric field Ex and Ey parallel to the antenna surface was uniformly distributed, and there was no zero point. The proposed antenna achieved a 100% read rate of tags parallel to its surface in the reading area of 150 mm × 150 mm × 220 mm. Simulation results were consistent with the results of real-world measurements, and the proposed antenna was suitable as a reader antenna in near-field applications. The polarization mode of RFID tags is mostly linear polarization, and the placement of tags in practical applications is diversified. Compared with the traditional RFID reader antenna, the proposed antenna achieves uniform electric field distribution parallel to the antenna surface, but the single-direction electric field has zero-reading points, which is easy to cause the misread of tags. The RFID tags can be read more accurately. To verify the scalability of the reading area of the spiral antenna unit, it was used for array design, and simulations were conducted using 1 × 2, 2 × 2, 1 × 4, and 2 × 4 arrays. The component distribution of the electric field excited by the four array antennas in the x and y directions was uniform and the reading area was controllable. Therefore, the proposed spiral antenna has the expandability of the reading area and can meet the needs of different application scenarios by changing the number of array units. With the array extension, the matching network also extends, and the impedance characteristics of the array antenna are somewhat different, but they also meet the application requirements.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献