Author:
Liu Yong,Li Bing,Zhang Yan,Zhao Xia
Abstract
With the developments of Internet of Things (IoT) and cloud-computing technologies, cloud servers need storage of a huge volume of IoT data with high throughput and robust security. Joint Compression and Encryption (JCAE) scheme based on Huffman algorithm has been regarded as a promising technology to enhance the data storage method. Existing JCAE schemes still have the following limitations: (1) The keys in the JCAE would be cracked by physical and cloning attacks; (2) The rebuilding of Huffman tree reduces the operational efficiency; (3) The compression ratio should be further improved. In this paper, a Huffman-based JCAE scheme using Physical Unclonable Functions (PUFs) is proposed. It provides physically secure keys with PUFs, efficient Huffman tree mutation without rebuilding, and practical compression ratio by combining the Lempel-Ziv and Welch (LZW) algorithm. The performance of the instanced PUFs and the derived keys was evaluated. Moreover, our scheme was demonstrated in a file protection system with the average throughput of 473Mbps and the average compression ratio of 0.5586. Finally, the security analysis shows that our scheme resists physical and cloning attacks as well as several classic attacks, thus improving the security level of existing data protection methods.
Funder
Shenzhen Science Technology and Innovation Commission
National natural science foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献