Prediction of Public Trust in Politicians Using a Multimodal Fusion Approach

Author:

Syed Muhammad Shehram Shah,Pirogova ElenaORCID,Lech Margaret

Abstract

This paper explores the automatic prediction of public trust in politicians through the use of speech, text, and visual modalities. It evaluates the effectiveness of each modality individually, and it investigates fusion approaches for integrating information from each modality for prediction using a multimodal setting. A database was created consisting of speech recordings, twitter messages, and images representing fifteen American politicians, and labeling was carried out per a publicly available ranking system. The data were distributed into three trust categories, i.e., the low-trust category, mid-trust category, and high-trust category. First, unimodal prediction using each of the three modalities individually was performed using the database; then, using the outputs of the unimodal predictions, a multimodal prediction was later performed. Unimodal prediction was performed by training three independent logistic regression (LR) classifiers, one each for speech, text, and images. The prediction vectors from the individual modalities were then concatenated before being used to train a multimodal decision-making LR classifier. We report that the best performing modality was speech, which achieved a classification accuracy of 92.81%, followed by the images, achieving an accuracy of 77.96%, whereas the best performing model for text-modality achieved a 72.26% accuracy. With the multimodal approach, the highest classification accuracy of 97.53% was obtained when all three modalities were used for trust prediction. Meanwhile, in a bimodal setup, the best performing combination was that combining the speech and image visual modalities by achieving an accuracy of 95.07%, followed by the speech and text combination, showing an accuracy of 94.40%, whereas the text and images visual modal combination resulted in an accuracy of 83.20%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference52 articles.

1. Introduction: Social Signal Processing;Vinciarelli,2017

2. Social signal processing: Survey of an emerging domain

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3