Abstract
We described a real-time hair segmentation method based on a fully convolutional network with the basic structure of an encoder–decoder. In one of the traditional computer vision techniques for hair segmentation, the mean shift and watershed methodologies suffer from inaccuracy and slow execution due to multi-step, complex image processing. It is also difficult to execute the process in real-time unless an optimization technique is applied to the partition. To solve this problem, we exploited Mobile-Unet using the U-Net segmentation model, which incorporates the optimization techniques of MobileNetV2. In experiments, hair segmentation accuracy was evaluated by different genders and races, and the average accuracy was 89.9%. By comparing the accuracy and execution speed of our model with those of other models in related studies, we confirmed that the proposed model achieved the same or better performance. As such, the results of hair segmentation can obtain hair information (style, color, length), which has a significant impact on human-robot interaction with people.
Funder
Korea Evaluation Institute of Industrial Technology
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献