Path-Sensitive Oracle Data Selection via Static Analysis

Author:

Zhang MingzheORCID,Gong Yunzhan,Wang Yawen,Jin Dahai

Abstract

A test oracle is a procedure that is used during testing to determine whether software behaves correctly or not. One of most important tasks for a test oracle is to choose oracle data (the set of variables monitored during testing) to observe. However, most literature on test oracles has focused either on formal specification generation or on automated test oracle construction, whereas little work exists for supporting oracle data selection. In this paper, we present a path-sensitive approach, PSODS (path-sensitive oracle data selection), to automatically select oracle data for use by expected value oracles. PSODS ranks paths according to the possibility that potential faults may exist in them, and the ranked paths help testers determine which oracle data should be considered first. To select oracle data for each path, we introduce quantity and quality analysis of oracle data, which use static analysis to estimate oracle data for their substitution capability and fault-detection capability. Quantity analysis can reduce the number of oracle data. Quality analysis can rank oracle data based on their fault-detection capability. By using quantity and quality analysis, PSODS reduces the cost of oracle construction and improves fault-detection efficiency and effectiveness. We have implemented our approach and applied it to a real-world project. The experimental results show that PSODS is efficient in helping testers construct test oracles. Moreover, the oracle datasets produced by our approach are more effective and efficient than output-only oracles at detecting faults.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3