Android Malware Detection Based on Structural Features of the Function Call Graph

Author:

Yang Yang,Du Xuehui,Yang Zhi,Liu Xing

Abstract

The openness of Android operating system not only brings convenience to users, but also leads to the attack threat from a large number of malicious applications (apps). Thus malware detection has become the research focus in the field of mobile security. In order to solve the problem of more coarse-grained feature selection and larger feature loss of graph structure existing in the current detection methods, we put forward a method named DGCNDroid for Android malware detection, which is based on the deep graph convolutional network. Our method starts by generating a function call graph for the decompiled Android application. Then the function call subgraph containing the sensitive application programming interface (API) is extracted. Finally, the function call subgraphs with structural features are trained as the input of the deep graph convolutional network. Thus the detection and classification of malicious apps can be realized. Through experimentation on a dataset containing 11,120 Android apps, the method proposed in this paper can achieve detection accuracy of 98.2%, which is higher than other existing detection methods.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference36 articles.

1. Smartphone Market Share https://www.idc.com/promo/smartphone-market-share/os

2. Android Passes 2.5 Billion Monthly Active Devices https://venturebeat.com/2019/05/07/android-passes-2-5-billion-monthly-active-devices/

3. Mobile Cyber Threats https://media.kaspersky.com/pdf/Kaspersky-Lab-KSN-Report-mobile-cyberthreats-web.pdf

4. Mobile Phone Security Status Report of 2019 http://zt.360.cn/1101061855.php?dtid=1101061451&did=610435085

5. Significant Permission Identification for Machine-Learning-Based Android Malware Detection

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3