Low Switching Frequency Operation Control of Line Voltage Cascade Triple Converter

Author:

Wang Zhiqiang,Hao Sheng,Han Dongyang,Jin Xuefeng,Gu XinORCID

Abstract

With the increasing power level of wind power generation system, the traditional topology of power converters can no longer meets the demand of high-power wind power generation systems due to the limitation of device performance. The line voltage cascade type multiple PWM converter (LVC-VSC) is a kind of converter that uses the traditional two-level and six-switch voltage source converter as the basic component unit, and each unit is combined with the line voltage cascade method. This type of converter is suitable for medium-voltage and high-power applications such as wind power generation and metallurgical drives because of its easy modularization, strong scalability and low number of isolated power supplies required. However, for medium-voltage and high-power applications, the switching frequency of power devices in the converter is low, usually limited to a few hundred hertz. The traditional modulation method of line voltage cascade converter has a large number of redundant states, and simply reducing the carrier ratio will cause serious degradation of control performance and system instability. To address this problem, this paper proposes a modulation strategy and a corresponding control method for low switching frequency. The modulation strategy is based on the vector relationship of finite switching states, and the optimal switching sequence is selected according to the modulation system by removing redundant states, thus ensuring the application of different modulation sequences under different modulation depths and ensuring the current quality on the basis of the minimum switching frequency, which effectively solves the control problems at low switching frequency. The experimental results show the correctness and effectiveness of the proposed modulation strategy and control method.

Funder

The National Natural Science Foundation of China

The Natural Science Foundation of Tianjin City

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3