Author:
Fan Kefeng,Hong Kai,Li Fei
Abstract
Deep convolutional neural networks are capable of achieving remarkable performance in single-image super-resolution (SISR). However, due to the weak availability of infrared images, heavy network architectures for insufficient infrared images are confronted by excessive parameters and computational complexity. To address these issues, we propose a lightweight progressive compact distillation network (PCDN) with a transfer learning strategy to achieve infrared image super-resolution reconstruction with a few samples. We design a progressive feature residual distillation (PFDB) block to efficiently refine hierarchical features, and parallel dilation convolutions are utilized to expand PFDB’s receptive field, thereby maximizing the characterization power of marginal features and minimizing the network parameters. Moreover, the bil-global connection mechanism and the difference calculation algorithm between two adjacent PFDBs are proposed to accelerate the network convergence and extract the high-frequency information, respectively. Furthermore, we introduce transfer learning to fine-tune network weights with few-shot infrared images to obtain infrared image mapping information. Experimental results suggest the effectiveness and superiority of the proposed framework with low computational load in infrared image super-resolution. Notably, our PCDN outperforms existing methods on two public datasets for both ×2 and ×4 with parameters less than 240 k, proving its efficient and excellent reconstruction performance.
Funder
National Key Research and Development Program of China
2019 Public Service Platform of Industrial Technology Foundation of MIIT
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献