Infrared Image Super-Resolution via Progressive Compact Distillation Network

Author:

Fan Kefeng,Hong Kai,Li Fei

Abstract

Deep convolutional neural networks are capable of achieving remarkable performance in single-image super-resolution (SISR). However, due to the weak availability of infrared images, heavy network architectures for insufficient infrared images are confronted by excessive parameters and computational complexity. To address these issues, we propose a lightweight progressive compact distillation network (PCDN) with a transfer learning strategy to achieve infrared image super-resolution reconstruction with a few samples. We design a progressive feature residual distillation (PFDB) block to efficiently refine hierarchical features, and parallel dilation convolutions are utilized to expand PFDB’s receptive field, thereby maximizing the characterization power of marginal features and minimizing the network parameters. Moreover, the bil-global connection mechanism and the difference calculation algorithm between two adjacent PFDBs are proposed to accelerate the network convergence and extract the high-frequency information, respectively. Furthermore, we introduce transfer learning to fine-tune network weights with few-shot infrared images to obtain infrared image mapping information. Experimental results suggest the effectiveness and superiority of the proposed framework with low computational load in infrared image super-resolution. Notably, our PCDN outperforms existing methods on two public datasets for both ×2 and ×4 with parameters less than 240 k, proving its efficient and excellent reconstruction performance.

Funder

National Key Research and Development Program of China

2019 Public Service Platform of Industrial Technology Foundation of MIIT

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3