Abstract
As a promising application for autonomous driving, vehicle platooning aims at increasing traffic throughput, improving road safety, and reducing air pollution and fuel consumption. However, frequent traffic perturbations will bring more fuel consumption because vehicles driving in a platoon require more control to ensure safe driving, especially in high-density scenes. In this paper, considering the traffic perturbations and high-density scenes, we integrate communication and control systems to reduce the fuel consumption of a platoon. By obtaining the velocities of multiple vehicles ahead through a long-term evolution-vehicle (LTE-V) network, we propose a modified distributed model predictive control (DMPC) method to smooth traffic perturbations and handle the constraints of vehicle state and control. In addition, considering a limited number of uplink channels that can be reused in the platoon and the uncertainty of wireless channels, a radio resource allocation optimization problem in the LTE-V network is modeled. This problem is solved in two steps including maximum vehicle-to-vehicle (V2V) broadcast distance and minimum weight matching. This resource allocation scheme increases the platoon-based V2V broadcast distance while ensuring the ergodic capacity requirement of the cellular user (CUE) uplink communication and the reliability of platoon-based V2V communication. Simulation results show that the proposed method improves fuel efficiency compared to the existing schemes.
Funder
National Natural Science Foundation of China
Key Project of Guangdong Natural Science Foundation
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献