A Mixed Hardware-Software Implementation of a High-Performance PMSM Controller

Author:

Milik AdamORCID,Rudnicki TomaszORCID

Abstract

Implementation of the permanent magnet synchronous motor vector control implies strong time dependencies. The control process requires precise measurement of motor shaft position and winding currents to establish correct driving. The tight time dependencies are difficult to achieve using a programmatic approach. Specific controller architecture is proposed for programmable systems on chip architectures enabling operations precise timing and improved processing performance. The controller is decomposed into a dedicated hardware interface system and programmatic part for easy implementation and modification of the control algorithm. The proposed architecture offers precise and repeatable input-output operations timing and assures meeting tight time dependencies. The control algorithm is executed as an interrupt service requested by the interface system in a constant processing period with relatively weak time dependencies. Additionally, the interface system preprocesses input and output signals reducing the computation effort and saving time for algorithm computations. The specific implementation enabled improved measurement of the motor’s windings current with suppression of disturbances caused by inverter operation. There is shown an efficient implementation of Parke’s and Clarke’s transformations using specific resources of modern programmable logic devices. In opposite to the software-managed implementation presented implementation assures completing processing faster, using a minimal number of hardware resources of the FPGA platform and offering the highest flexibility of software part implementation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3