Intelligent Random Access for Massive-Machine Type Communications in Sliced Mobile Networks

Author:

Yang Bei,Wei FengshengORCID,She Xiaoming,Jiang Zheng,Zhu Jianchi,Chen Peng,Wang Jianxiu

Abstract

With the emerging Internet of Things paradigm, massive Machine-Type Communication (mMTC) has been identified as one of the prominent services that enables a broad range of applications with various Quality of Service (QoS) requirements for 5G-and-beyond networks. However, it is very difficult to employ a monolithic physical network to support various mMTC applications with differentiated QoS requirements. Moreover, in ultra-dense mobile networks, the scarcity of the preamble and Physical Downlink Control CHannel (PDCCH) resources may easily lead to resource collisions when a large number of devices access the network simultaneously. To tackle these issues, in this paper, we propose a network slicing-enabled intelligent random access framework for mMTC. First, by tailoring a gigantic physical network into multiple lightweight network slices, fine-grained QoS provisioning can be accomplished, and the collision domain of Random Access (RA) can be effectively reduced. In addition, we propose a novel concept of sliced preambles (sPreambles), based on which the transitional RA procedure is optimized, and the issue of preamble shortage is effectively relieved. Furthermore, with the aim of alleviating PDCCH resource shortage and improving transmission efficiency, we propose a learning-based resource-sharing scheme that can intelligently multiplex the PDCCH resources in the naturally dynamic environment. Simulation results show that the proposed framework can efficiently allocate resources to individual mMTC devices while guaranteeing their QoS requirements in random access processes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference36 articles.

1. A survey of emerging M2M systems: Context, task, and objective;Cao;IEEE Internet Things J.,2016

2. Ratasuk, R., Mangalvedhe, N., Bhatoolaul, D., and Ghosh, A. (2017, January 4–8). LTE-M Evolution Towards 5G Massive MTC. Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Piscataway, NJ, USA.

3. Ericsson (2022, November 23). Ericsson Mobility Report. Technical Report. Available online: https://www.ericsson.com/49d3a0/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-june-2022.pdf.

4. Toward Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions;Sharma;IEEE Commun. Surv. Tutor.,2020

5. Delay-Aware Priority Access Classification for Massive Machine-Type Communication;Chowdhury;IEEE Trans. Veh. Technol.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3