Design of Generalized Enhanced Static Segment Multiplier with Minimum Mean Square Error for Uniform and Nonuniform Input Distributions

Author:

Di Meo GennaroORCID,Saggese GerardoORCID,Strollo Antonio G. M.,De Caro DavideORCID

Abstract

In this paper, we analyze the performances of an Enhanced Static Segment Multiplier (ESSM) when the inputs have both uniform and non-uniform distribution. The enhanced segmentation divides the multiplicands into a lower, a middle, and an upper segment. While the middle segment is placed at the center of the inputs in other implementations, we seek the optimal position able to minimize the approximation error. To this aim, two design parameters are exploited: m, defining the size and the accuracy of the multiplier, and q, defining the position of the middle segment for further accuracy tuning. A hardware implementation is proposed for our generalized ESSM (gESSM), and an analytical model is described, able to find m and q which minimize the mean square approximation error. With uniform inputs, the error slightly improves by increasing q, whereas a large error decrease is observed by properly choosing q when the inputs are half-normal (with a NoEB up to 18.5 bits for a 16-bit multiplier). Implementation results in 28 nm CMOS technology are also satisfactory, with area and power reductions up to 71% and 83%. We report image and audio processing applications, showing that gESSM is a suitable candidate in applications with non-uniform inputs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correcting Skewed Scanned Images Obtained Using Mobile Devices;Karadeniz Fen Bilimleri Dergisi;2023-12-15

2. Novel Low-Power Floating-Point Divider With Linear Approximation and Minimum Mean Relative Error;IEEE Transactions on Circuits and Systems I: Regular Papers;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3