Packet Loss Optimization in Router Forwarding Tasks Based on the Particle Swarm Algorithm

Author:

Ghani Rana FareedORCID,Al-Jobouri Laith

Abstract

Software-defined networks (SDNs) are computer networks where parameters and devices are configured by software. Recently, artificial intelligence aspects have been used for SDN programs for various applications, including packet classification and forwarding according to the quality of service (QoS) requirements. The main problem is that when packets from different applications pass through computer networks, they have different QoS criteria. To meet the requirements of packets, routers classify these packets, add them to multiple weighting queue systems, and forward them according to their priorities. Multiple queue systems in routers usually use a class-based weighted round-robin (CBWRR) scheduling algorithm with pre-configured fixed weights for each priority queue. The problem is that the intensity of traffic in general and of each packet class occasionally changes. Therefore, in this work, we suggest using the particle swarm optimization algorithm to find the optimal weights for the weighted fair round-robin algorithm (WFRR) by considering the variable densities of the traffic. This work presents a framework to simulate router operations by determining the weights and schedule packets and forwarding them. The proposed algorithm to optimize the weights is compared with the conventional WFRR algorithm, and the results show that the particle swarm optimization for the weighted round-robin algorithm is more efficient than WFRR, especially in high-intensity traffic. Moreover, the average packet-loss ratio does not exceed 7%, and the proposed algorithms are better than the conventional CBWRR algorithm and the related work results.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference36 articles.

1. Introduction to software defined networks (SDN);Akpovi;Int. J. Appl. Inf. Syst.,2016

2. DSF: A distributed SDN control plane framework for the east/west interface;Almadani;IEEE Access,2021

3. Cisco (2022, September 24). Software-Defined Networking. Available online: https://www.cisco.com/c/en/us/solutions/software-defined-networking/overview.html?dtid=osscdc000283.

4. Software defined networking (SDN) challenges, issues and solutions;Rana;Int. J. Comput. Sci. Eng.,2019

5. Intelligent quality of service routing in software-defined satellite networking;Wu;IEEE Access,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3