Abstract
The seismoelectric effect is the fundamental basis for seismoelectric logging. Most of the existing theories for the seismoelectric effect are based on the Pride theory, which adopts the assumption of a thin electric double layer and uses the volume-averaging method to derive the seismoelectric coupling equations; hence, the obtained electrokinetic coupling coefficient is not applicable to large-Debye-length cases. In addition, the Pride theory neglects the change in seepage velocity with the radial position of the pore when calculating the streaming current, which leads to an inaccurate reflection of the influence of pore size on the electrokinetic coupling coefficient. In this study, we proposed a flux-averaging method to solve the effective net residual charge density of porous media and further derived the electrokinetic coupling coefficient expressed by the effective net residual charge density. We also investigated the effect of formation parameters and compared the results with those calculated using the Pride theory. Since the proposed method is not limited by the thin electric double layer assumption, it is suitable for both small- and large-Debye-length cases. Moreover, we also carried out flume experiments to investigate the influence of salinity, where both thin and thick electric double layer cases were studied. The comparison between the results of the experiment and simulation verified the correctness of the proposed method. Furthermore, the proposed method took into account the variation in seepage velocity with pore location when solving for the streaming current; therefore, the influence of the pore size on the electrokinetic coefficient can be described more accurately.
Funder
National Science Foundation of China
Sichuan Science and Technology Program
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Development of Analytical and Numerical Methods for Research of Porous Mediums;2023 13th International Conference on Advanced Computer Information Technologies (ACIT);2023-09-21