Space-Time Image Velocimetry Based on Improved MobileNetV2

Author:

Hu QimingORCID,Wang JianpingORCID,Zhang Guo,Jin Jianhui

Abstract

Space-time image velocimetry (STIV) technology has achieved good performance in river surface-flow velocity measurement, but the application in a field environment is affected by bad weather or lighting conditions, which causes large measurement errors. To improve the measurement accuracy and robustness of STIV, we combined STIV with deep learning. Additionally, considering the light weight of the neural network model, we adopted MobileNetV2 and improved its classification accuracy. We name this method MobileNet-STIV. We also constructed a sample-enhanced mixed dataset for the first time, with 180 classes of images and 100 images per class to train our model, which resulted in a good performance. Compared to the current meter measurement results, the absolute error of the mean velocity was 0.02, the absolute error of the flow discharge was 1.71, the relative error of the mean velocity was 1.27%, and the relative error of the flow discharge was 1.15% in the comparative experiment. In the generalization performance experiment, the absolute error of the mean velocity was 0.03, the absolute error of the flow discharge was 0.27, the relative error of the mean velocity was 6.38%, and the relative error of the flow discharge was 5.92%. The results of both experiments demonstrate that our method is more accurate than the conventional STIV and large-scale particle image velocimetry (LSPIV).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference23 articles.

1. Key Technology of Flood Prevention, Control and Emergency Management for Small and Medium-Sized Rivers;Wan;J. Hohai Univ. (Nat. Sci.),2021

2. Exploration on present situation and developing tendency of mountain flood disaster prevention technology;He;China Water Resour.,2014

3. Measurement of the flood discharge of a small-sized river using an existing digital video recording system;Tsubaki;J. Hydro-Environ. Res.,2011

4. Development status of non-contact open channel water flow monitoring technology;Xu;Water Resour. Inform.,2013

5. Review of image-based river surface velocimetry research;Yang;J. Zhejiang Univ. Sci.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3