GN-CNN: A Point Cloud Analysis Method for Metaverse Applications

Author:

Sun Qian,Xu YueranORCID,Sun Yidan,Yao ChanghuaORCID,Lee Jeannie Su AnnORCID,Chen KanORCID

Abstract

Metaverse applications often require many new 3D point cloud models that are unlabeled and that have never been seen before; this limited information results in difficulties for data-driven model analyses. In this paper, we propose a novel data-driven 3D point cloud analysis network GN-CNN that is suitable for such scenarios. We tackle the difficulties with a few-shot learning (FSL) approach by proposing an unsupervised generative adversarial network GN-GAN to generate prior knowledge and perform warm start pre-training for GN-CNN. Furthermore, the 3D models in the Metaverse are mostly acquired with a focus on the models’ visual appearances instead of the exact positions. Thus, conceptually, we also propose to augment the information by unleashing and incorporating local variance information, which conveys the appearance of the model. This is realized by introducing a graph convolution-enhanced combined multilayer perceptron operation (CMLP), namely GCMLP, to capture the local geometric relationship as well as a local normal-aware GeoConv, namely GNConv. The GN-GAN adopts an encoder–decoder structure and the GCMLP is used as the core operation of the encoder. It can perform the reconstruction task. The GNConv is used as the convolution-like operation in GN-CNN. The classification performance of GN-CNN is evaluated on ModelNet10 with an overall accuracy of 95.9%. Its few-shot learning performance is evaluated on ModelNet40, when the training set size is reduced to 30%, the overall classification accuracy can reach 91.8%, which is 2.5% higher than Geo-CNN. Experiments show that the proposed method could improve the accuracy in 3D point cloud classification tasks and under few-shot learning scenarios, compared with existing methods such as PointNet, PointNet++, DGCNN, and Geo-CNN, making it a beneficial method for Metaverse applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3