ASIPAMPIUM: An Efficient ASIP Generator for Low Power Applications

Author:

Engroff Alian,Romanssini Marcelo,Compassi-Severo LucasORCID,de Aguirre Paulo C. C.ORCID,Girardi AlessandroORCID

Abstract

The adoption of customized ASIPs (Application Specific Instruction Set Processors) in embedded circuits is an important alternative for optimizing power consumption, silicon area, or processing performance according to the design requirements. The processor is implemented specifically for the target application, which allows the hardware customization in terms of instruction set architecture, data word length, memory size, and parallelism. This work describes an EDA tool for the semi-automatic development of ASIPs named ASIPAMPIUM. The strategy is to provide a set of integrated tools to interpret and generate a customized hardware for a given target application, including compilation, simulation, and hardware synthesis. From the C code description of the application, the tool returns a synthesizable hardware description of the processor. The proposed methodology is based on the adaptation of a new customizable microprocessor called PAMPIUM, which can be optimized in terms of silicon area, power consumption, or processing performance according to the target application. The ASIPAMPIUM tool provides a series of simulated data to the designer in order to identify optimization strategies in both software and hardware domains. We show the results for the implementation of an FFT algorithm using the proposed methodology, which achieved best results in terms of silicon area and energy consumption compared to other works described in the literature for both FPGA and silicon implementation. Moreover, measurement results of the implementation in silicon of a dedicated ASIP for interfacing with six sensors in real-time, including three I2C, an SPI, and an RS-232 interfaces, demonstrate the complete design flow, from the C code program to physical implementation and characterization. Aside from providing a short design time, the ASIPAMPIUM tool also affords a simple and intuitive design flow, allowing the designer to deal with different design trade-offs and objectives.

Funder

Brazilian Research Agencies CNPq

FAPERGS

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3