Mask Detection Method Based on YOLO-GBC Network

Author:

Wang Changqing,Zhang Bei,Cao Yuan,Sun Maoxuan,He Kunyu,Cao Zhonghao,Wang Meng

Abstract

For the problems of inaccurate recognition and the high missed detection rate of existing mask detection algorithms in actual scenes, a novel mask detection algorithm based on the YOLO-GBC network is proposed. Specifically, in the backbone network part, the global attention mechanism (GAM) is integrated to improve the ability to extract key information through cross-latitude information interaction. The cross-layer cascade method is adopted to improve the feature pyramid structure to achieve effective bidirectional cross-scale connection and weighted feature fusion. The sampling method of content-aware reassembly of features (CARAFE) is integrated into the feature pyramid network to fully retain the semantic information and global features of the feature map. NMS is replaced with Soft-NMS to improve model prediction frame accuracy by confidence decay method. The experimental results show that the average accuracy (mAP) of the YOLO-GBC reached 91.2% in the mask detection data set, which is 2.3% higher than the baseline YOLOv5, and the detection speed reached 64FPS. The accuracy and recall have also been improved to varying degrees, increasing the detection task of correctly wearing masks.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Lightweight CER-YOLOv5s Algorithm for Detection of Construction Vehicles at Power Transmission Lines;Applied Sciences;2024-07-30

2. Research on Mask-Wearing Detection Algorithm Based on Improved YOLOv7-Tiny;IEICE Transactions on Information and Systems;2024-07-01

3. Research of mask wearing detection method using Improved YOLO network;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

4. Fast detection of face masks in public places using QARepVGG-YOLOv7;Journal of Real-Time Image Processing;2024-05-19

5. Detection and recognition of tea buds by integrating deep learning and image-processing algorithm;Journal of Food Measurement and Characterization;2024-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3