Efficiency, Cost, and Volume Comparison of SiC-Based and IGBT-Based Full-Scale Converter in PMSG Wind Turbine

Author:

Loncarski JelenaORCID,Hussain Hussain A.ORCID,Bellini AlbertoORCID

Abstract

Power electronics, as an enabling technology in most renewable energy systems, is gaining attention as the penetration of renewable energy sources increases. Wide-bandgap power electronics are of particular interest due to their superior voltage blocking capabilities and fast switching speeds. They can viably be considered in the renewable energy sources, especially as the penetration of wind energy is expected to increase by a great extent in the upcoming years. In this paper, a comparison of Silicon Carbide-based and Silicon-based wind energy conversion systems has been performed, as it is crucial in understanding the benefits of adopting wide-bandgap-based solutions at a commercial level. For this analysis, a 2 MW permanent magnet synchronous generator-based wind conversion system with a bidirectional full-scale frequency converter comprised of two back-to-back inverters is considered. The efficiency, cost, and total volume of the passive components comparison have been conducted for Silicon- and Silicon Carbide-based converters. The comparison presented is a fair comparison, meaning that the converters are designed with modules of the same power ratings. Wind energy systems are compared both for the same switching frequency (low switching frequency suitable for IGBT modules) and also considering a Silicon Carbide-MOSFET-based converter working at high switching frequencies. The comparison is performed in PLECS simulation tool, using the PLECS libraries for different modules obtained from the manufacturers’ experimental data. The results show the benefits of using the Silicon Carbide-based converter when it comes to volume reduction in the passive components and provide insights to what is missing in order to achieve overall system volume and cost savings.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3