PLA—A Privacy-Embedded Lightweight and Efficient Automated Breast Cancer Accurate Diagnosis Framework for the Internet of Medical Things

Author:

Yan Chengxiao1ORCID,Zeng Xiaoyang1,Xi Rui1,Ahmed Awais1ORCID,Hou Mengshu12,Tunio Muhammad Hanif1

Affiliation:

1. School of Computer Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China

2. School of Big Data and Artificial Intelligence, Chengdu Technological University, Chengdu 611730, China

Abstract

The Internet of Medical Things (IoMT) can automate breast tumor detection and classification with the potential of artificial intelligence. However, the leakage of sensitive data can cause harm to patients. To address this issue, this study proposed an intrauterine breast cancer diagnosis method, namely “Privacy-Embedded Lightweight and Efficient Automated (PLA)”, for IoMT, which represents an approach that combines privacy-preserving techniques, efficiency, and automation to achieve our goals. Firstly, our model is designed to achieve lightweight classification prediction and global information processing of breast cancer by utilizing an advanced IoMT-friendly ViT backbone. Secondly, PLA protects patients’ privacy by federated learning, taking the classification task of breast cancer as the main task and introducing the texture analysis task of breast cancer images as the auxiliary task to train the model. For our PLA framework, the classification accuracy is 0.953, the recall rate is 0.998 for the best, the F1 value is 0.969, the precision value is 0.988, and the classification time is 61.9 ms. The experimental results show that the PLA model performs better than all of the comparison methods in terms of accuracy, with an improvement of more than 0.5%. Furthermore, our proposed model demonstrates significant advantages over the comparison methods regarding time and memory.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3