Solution-Processed Carbon Nanotube Field-Effect Transistors Treated by Material Post-Treatment Approaches

Author:

Li Hao123,Yang Leijing123,Xiu Haojin123,Deng Meng123,Yang Yingjun4,Wei Nan4ORCID

Affiliation:

1. School of Electronic Engineering, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China

2. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China

3. Beijing Key Laboratory of Space-Round Interconnection and Convergence, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China

4. Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, Department of Electronics, Peking University, Beijing 100871, China

Abstract

The preparation of semiconducting carbon nanotube (s-CNT) thin films by solution processing has become the mainstream approach nowadays. However, residual polymers are always inevitable during the sorting of s-CNTs in solution. These residual polymers will degrade the electrical properties of the CNTs. Although several post-treatment approaches have been reported to be effective in improving the performance of the device, there is no deep analysis and comprehensive comparison of these approaches, so there is no overall guidance on the optimum treatment of CNTs for performance improvement. In this work, we characterize CNT thin film with three post-treatment methods, including annealing (A), yttrium oxide coating and decoating (Y), and annealing combined with YOCD (A + Y), and evaluate and compare the performance of Field Effect Transistors (FETs) based on the above mentioned CNT thin film. The result shows that the CNT thin film treated by the A + Y method is the clearest and flattest; the average roughness determined from the overall AFM image is reduced by 28% (from 1.15–1.42 nm (O) to 0.826–1.03 nm (A + Y)), which is beneficial in improving the device contact quality, uniformity, and stability. The on-state current (Ion) of the FETs with CNTs treated by A, Y, and A + Y is improved by 1.2 times, 1.5 times, and 1.75 times, respectively, compared with that of FETs fabricated by untreated CNTs (O for original CNTs), indicating that the A + Y is the optimum post-treatment method for the A + Y and combines the effect of the other two methods. Accordingly, the contact and channel resistance (2Rc and Rch) of the CNT FETs treated by different post-treatment methods including A, Y, and A + Y is reduced by 0.18/0.24 times, 0.37/0.32 times, and 0.48/0.41 times, respectively. The ratio of improvement in device performance is about 1:2 for the contact and channel sections for a transistor with a 500 nm channel length, and this ratio will go up further with the channel length scaling; together with the decay in the channel resistance optimization effect in the scaling device, it is necessary to adopt more methods to effectively reduce the contact resistance further.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities and Peking Nanofab

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3