Using the Displaced Phase Center Azimuth Multiple Beams Technique with Spaceborne Synthetic Aperture Radar Systems for Multichannel Reconstruction of Accelerated Moving Targets

Author:

Xu Wei12ORCID,Chen Yu12,Huang Pingping12ORCID,Tan Weixian12ORCID,Qi Yaolong12

Affiliation:

1. College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

2. Inner Mongolia Key Laboratory of Radar Technology and Application, Hohhot 010051, China

Abstract

The displaced phase center multiple azimuth beams (DPCMAB) technique can help spaceborne synthetic aperture radar (SAR) systems obtain the high-resolution wide-swath (HRWS) imaging capacity, and azimuth multichannel reconstruction is usually required due to azimuth non-uniform sampling. Compared with stationary and moving targets, the range history and azimuth signal model of the moving target with an acceleration are obviously different. The azimuth multichannel signal model of an accelerated moving target is established, and the relationship between acceleration and Doppler parameters is analyzed. Furthermore, the impact of the acceleration on azimuth multichannel reconstruction and imaging results is simulated and analyzed. According to the azimuth multichannel signal model, an azimuth multichannel reconstruction approach for accelerated moving targets is proposed. The key point of the proposed reconstruction approach is the modified azimuth multichannel matrix, which is related not only to azimuth and slant velocities but also accelerations. The target’s velocities and accelerations are obtained using multiple Doppler parameter estimations. Compared with the conventional method of processing the raw data of accelerated moving targets, this proposed method could distinctly suppress image defocusing and pairs of false targets. Simulation results on point targets validate the proposed azimuth multichannel reconstruction approach.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3