WRA-MF: A Bit-Level Convolutional-Weight-Decomposition Approach to Improve Parallel Computing Efficiency for Winograd-Based CNN Acceleration

Author:

Xiang Siwei1,Lv Xianxian1,Meng Yishuo1,Wang Jianfei1,Lu Cimang2,Yang Chen1ORCID

Affiliation:

1. The School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China

2. Shenzhen Xinrai Sinovoice Technology Co., Ltd., Shenzhen 518000, China

Abstract

FPGA-based convolutional neural network (CNN) accelerators have been extensively studied recently. To exploit the parallelism of multiplier–accumulator computation in convolution, most FPGA-based CNN accelerators heavily depend on the number of on-chip DSP blocks in the FPGA. Consequently, the performance of the accelerators is restricted by the limitation of the DSPs, leading to an imbalance in the utilization of other FPGA resources. This work proposes a multiplication-free convolutional acceleration scheme (named WRA-MF) to relax the pressure on the required DSP resources. Firstly, the proposed WRA-MF employs the Winograd algorithm to reduce the computational density, and it then performs bit-level convolutional weight decomposition to eliminate the multiplication operations. Furthermore, by extracting common factors, the complexity of the addition operations is reduced. Experimental results on the Xilinx XCVU9P platform show that the WRA-MF can achieve 7559 GOP/s throughput at a 509 MHz clock frequency for VGG16. Compared with state-of-the-art works, the WRA-MF achieves up to a 3.47×–27.55× area efficiency improvement. The results indicate that the proposed architecture achieves a high area efficiency while ameliorating the imbalance in the resource utilization.

Funder

National Natural Science Foundation of China

Shenzhen Park of Hetao Shenzhen–Hong Kong Science and Technology Innovation Cooperation Zone Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3