Dynamic Malware Detection Using Parameter-Augmented Semantic Chain

Author:

Zhao Donghui1,Wang Huadong2,Kou Liang1ORCID,Li Zhannan1,Zhang Jilin1

Affiliation:

1. College of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China

2. DBAPPSecurity Co., Ltd., Hangzhou 310051, China

Abstract

Due to the rapid development and widespread presence of malware, deep-learning-based malware detection methods have become a pivotal approach used by researchers to protect private data. Behavior-based malware detection is effective, but changes in the running environment and malware evolution can alter API calls used for detection. Most existing methods ignore API call parameters while analyzing them separately, which loses important semantic information. Therefore, considering API call parameters and their combinations can improve behavior-based malware detection. To improve the effectiveness of behavior-based malware detection systems, this paper proposes a novel API feature engineering method. The proposed method employs parameter-augmented semantic chains to improve the system’s resilience to unknown parameters and elevate the detection rate. The method entails semantically decomposing the API to derive a behavior semantic chain, which provides an initial representation of the behavior exhibited by samples. To further refine the accuracy of the behavior semantic chain in depicting the behavior, the proposed method integrates the parameters utilized by the API into the aforementioned semantic chain. Furthermore, an information compression technique is employed to minimize the loss of critical actions following truncation of API sequences. Finally, a deep learning model consisting of gated CNN, Bi-LSTM, and an attention mechanism is used to extract semantic features embedded within the API sequences and improve the overall detection accuracy. Additionally, we evaluate the proposed method on a competition dataset Datacon2019. Experiments indicate that the proposed method outperforms baselines employing vocabulary-based methods in both robustness to unknown parameters and detection rate.

Funder

Key Technology Research and Development Program of Zhejiang Province

General Research Program of the Department of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3